Catalysis and binding of cyclophilin A with different HIV-1 capsid constructs.

نویسندگان

  • Daryl A Bosco
  • Dorothee Kern
چکیده

The prolyl isomerase cyclophilin A (CypA) is required for efficient HIV-1 replication and is incorporated into virions through a binding interaction at the Gly-Pro(222) bond located within the capsid domain of the HIV-1 Gag precursor polyprotein (Pr(gag)). It has recently been shown that CypA efficiently catalyzes the cis/trans isomerization of Gly-Pro(222) within the isolated N-terminal domain of capsid (CA(N)). To address the proposal that CypA interacts with Gly-Pro sequences in the C-terminal domain of a mature capsid, the interaction between CypA and the natively folded, full-length capsid protein (CA(FL)) has been investigated here using nuclear magnetic resonance spectroscopy. In addition, a fragment of the Pr(gag) protein encoding the full-matrix protein and the N-terminal domain of capsid (MA-CA(N)) has been used to probe the catalytic interaction between CypA and an immature form of the capsid. The results discussed herein strongly suggest that Gly-Pro(222) located within the N-terminal domain of the capsid is the preferential site for CypA binding and catalysis and that catalysis of Gly-Pro(222) is unaffected by maturational processing at the N-terminus of the capsid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A.

Packaging of cyclophilin A (CypA) into HIV-1 virions is essential for efficient replication; however, the reason for this is unknown. Incorporation is mediated through binding to the Gly-89-Pro-90 peptide bond of the N-terminal domain of HIV-1 capsid (CA(N)). Despite the fact that CypA is a peptidyl-prolyl cis/trans isomerase, catalytic activity on CA(N) has not been observed previously. We sho...

متن کامل

Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site.

The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA...

متن کامل

Crystal Structure of Human Cyclophilin A Bound to the Amino-Terminal Domain of HIV-1 Capsid

The HIV-1 capsid protein forms the conical core structure at the center of the mature virion. Capsid also binds the human peptidyl prolyl isomerase, cyclophilin A, thereby packaging the enzyme into the virion. Cyclophilin A subsequently performs an essential function in HIV-1 replication, possibly helping to disassemble the capsid core upon infection. We report the 2.36 A crystal structure of t...

متن کامل

Molecular recognition in the HIV-1 capsid/cyclophilin A complex.

The HIV-1 capsid protein (CA) makes an essential interaction with the human peptidyl prolyl isomerase, cyclophilin A (CypA), that results in packaging of CypA into the virion at a CA to CypA stoichiometry of approximately 10:1. The 231 amino acid residue capsid protein is composed of an amino-terminal CypA binding domain (1 to approximately 151; CA151) and a carboxyl-terminal dimerization domai...

متن کامل

Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization.

Human immunodeficiency virus type 1 (HIV-1) infection is dependent on the proper disassembly of the viral capsid, or "uncoating," in target cells. The HIV-1 capsid consists of a conical multimeric complex of the viral capsid protein (CA) arranged in a hexagonal lattice. Mutations in CA that destabilize the viral capsid result in impaired infection owing to defects in reverse transcription in ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 43 20  شماره 

صفحات  -

تاریخ انتشار 2004